Latent class analysis with multiple latent group variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Latent Growth Modeling and Latent Class Analysis

Geared towards capturing change, longitudinal research is able to provide insight into a variety of phenomena of interest to IS researchers, especially IT adoption and use. However, its potential is constrained by the data analysis methods typically used. In this paper, I introduce an advanced technique – Latent Curve Modeling – and demonstrate how this technique supports longitudinal data anal...

متن کامل

Latent Class Analysis

The basic idea underlying latent class (LC) analysis is a very simple one: some of the parameters of a postulated statistical model differ across unobserved subgroups. These subgroups form the categories of a categorical latent variable (see entry latent variable). This basic idea has several seemingly unrelated applications, the most important of which are clustering, scaling, density estimati...

متن کامل

Dynamic Latent Class Analysis

ISSN: 1070-5511 (Print) 1532-8007 (Online) Journal homepage: http://www.tandfonline.com/loi/hsem20 Dynamic Latent Class Analysis Tihomir Asparouhov, Ellen L. Hamaker & Bengt Muthén To cite this article: Tihomir Asparouhov, Ellen L. Hamaker & Bengt Muthén (2017) Dynamic Latent Class Analysis, Structural Equation Modeling: A Multidisciplinary Journal, 24:2, 257-269, DOI: 10.1080/10705511.2016.125...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2017

ISSN: 2383-4757

DOI: 10.5351/csam.2017.24.2.173